Evaluation Of A Multiplexed PCR-based Method For Detecting Pathogens Of The Bone And Joint Infections

Pons B.1, Martin T.1, Gracieux P.1, Jay C.1, Clarebout G.1, Garnier L.1, Savelli H.1, Bridon I.1, Bourzac K.2, Kensinger B.2, Laurent F.3, Murphy C.4, Schmitt B.5, Butler-Wu SM.6, Rogatcheva M.2, Magro S.1

- 1 bioMérieux, Centre Christophe Mérieux, 5 rue des Berges, 38024 Grenoble Cedex 1, France, 2 BioFire Diagnostics, LLC, Salt Lake City, UT, USA,3 Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France,
- ⁴ Department of Pathology and Microbiology, University of Nebraska Medical Center Omaha, NE, USA, Indiana University School of Medicine, Indianapolis, IN, USA
- ⁶ Keck School of Medicine, Department of Pathology & Laboratory Medicine, University of Southern California, CA, US

BACKGROUND / OBJECTIVES

Bone and Joint Infections (BJI) are severe pathologies which can lead to permanent disability, or in rare cases death, and which have significant economic impact on public health systems.

BJI can be polymicrobial or caused by fastidious bacteria and the patient could have received antibiotics before surgery. Those factors increase the difficulty of culture-based diagnosis. Furthermore, up to two weeks are often needed to detect bacteria by culture. Alternatively, molecular approaches have been developed. A development version of the FilmArray® Bone and Joint Infection Panel (BJI Panel) is available.

This panel detects Gram-positive and -negative bacteria, Candida spp., and several antibiotic resistance markers. Utilization of this panel is so far limited to synovial fluids.

The objective of this study is to perform a preliminary evaluation of this panel.

MATERIALS AND METHODS

- A pilot evaluation was performed at 4 hospitals in the United States and France from July 2016 to March 2017.
- Synovial fluid specimen from 235 patients with suspected BJI were prospectively included in the study. Only patients with synovial fluids were included.
- > This represents a total of 243 samples (8 patients had 2 samples).
- Each hospital followed its standard protocol to collect and process the samples. All samples were tested in culture, PCR was used by site 3 to detect Kingella kingae.
- A residual volume of 200 µl was tested on the BJI panel.
- > BJI Panel results were compared to culture and discordant results were investigated using a comparator assay (PCR/sequencing).

	Site							
1	Indiana University							
2	University of Nebraska							
3	Hospices Civils de Lyon							
4	University of Southern California							

FilmArray® Bone and Joint Infection Panel description

Gram positive	Gram negative	Resistance markers	Yeast		
S.aureus	E.coli	vanA/B	Candida spp.		
S.lugdunensis	K.pneumoniae	CTX-M	C.albicans		
Streptococcus spp.	Enterobacter spp.	mecA/C			
S.pyogenes	Proteus spp	KPC			
S.agalactiae	M.morgannii	NDM			
S.pneumoniae	Citrobacter spp.	OXA-48-like			
E.faecalis	S.marcescens	IMP			
E.faecium	Salmonella spp.	VIM			
F. magna*	P.aeruginosa				
P.granulosum/avidum*	K.kingae				
C.perfringens*	N.gonorrhoeae				
Anaerococcus spp./Peptoniphilus spp.*	H. influenzae				
P.micra/P.anaerobius*	B. fragilis*				

Microorganisms identified using culture Staphylococcus luadunensis Enterococcus cecorum 1 Staphylococcus cohnii 1 Streptococcus pyogenes 1 Streptococcus viridans group Staphylococcus warneri 1


- >55 synovial fluids were positive by culture (23 %).
- A total of 57 isolates were recovered, 2 samples had 2 isolates.
- The mecA gene was detected in 4 S.epidermidis, 3 S.aureus and S.cohnii.
- The BJI Panel covers 42 out of 57 strains reported by culture. Species not covered are: S.epidermidis (6 isolates), P.acnes (3), S.capitis (2), S.warneri (1), E.cecorum (1), C. minutissimum (1) and P.multocida (1).

FilmArray Bone and Joint Infection Panel preliminary performances

FilmArray® compared to culture							
Target	FN	TP	Sensitivity	TN	FP	Specificity	Та
Escherichia coli	0	1	100	242	0	100	Esc
Kingella kingae	0	3	100	240	0	100	Kir
Pseudomonas aeruginosa	0	2	100	240	1	99.6	Ps
Staphylococcus lugdunensis	0	2	100	237	4	98.3	Sto
Streptococcus agalactiae	0	4	100	236	3	98.7	Sti
Streptococcus spp	0	6	100	232	5	97.9	Sti
Proteus spp	0	1	100	240	2	99.1	Pro
mecA/C	0	3	100	240	0	100	me
Staphylococcus aureus	2	16	89	218	7	96.8	Sto
P.granulosum/avidum	1	2	67	240	0	100	Р.
Enterococcus faecalis	2	3	60	234	4	98.3	En
Streptococcus pyogenes	1	0	0	241	1	99.6	Sti
Anaerococcus spp/Peptoniphilus spp	0	0	NA	243	0	100	An
Bacteroides fragilis	0	0	NA	242	1	99.6	Ва
Candida albicans	0	0	NA	243	0	100	Ca
Candida spp*	0	0	NA	231	0	100	Ca
Citrobacter spp*	0	0	NA	229	2	99.1	Cit
Clostridium perfringens	0	0	NA	242	1	99.6	Clo
Enterobacter spp	0	0	NA	243	0	100	En
Enterococcus faecium	0	0	NA	243	0	100	En
Finegoldia magna	0	0	NA	242	1	99.5	Fir
Haemophilus influenzae*	0	0	NA	231	0	100	На
Klebsiella pneumoniae	0	0	NA	243	0	100	Kle
Morganella morgannii*	0	0	NA	231	0	100	М
Neisseria gonorrhoeae	0	0	NA	243	0	100	Ne
P. micra/P. anaerobius	0	0	NA	242	1	99.6	P.i
Salmonella spp	0	0	NA	243	0	100	Sa
Serratia marcescens*	0	0	NA	230	1	99.6	Se
Streptococcus pneumoniae	0	0	NA	243	0	100	Sti

FilmArray® co		FilmArray® compared to culture and after investigation of discordants									
Target	FN TP	Sensitivity	TN	FP	Specificity	Target	FN	TP	Sensitivity	TN F	P Specificity
Escherichia coli	0 1	100	242	0	100	Escherichia coli	0	1	100	242	0 100
Kingella kingae	0 3	100	240	0	100	Kingella kingae	0	3	100	240	0 100
Pseudomonas aeruginosa	0 2	100	240	1	99.6	Pseudomonas aeruginosa	0	3	100	240	0 100
Staphylococcus lugdunensis	0 2	100	237	4	98.3	Staphylococcus lugdunensis	0	5	100	237	1 99.6
Streptococcus agalactiae	0 4	100	236	3	98.7	Streptococcus agalactiae	0	7	100	236	0 100
Streptococcus spp	0 6	100	232	5	97.9	Streptococcus spp	0	10	100	232	1 99.6
Proteus spp	0 1	100	240	2	99.1	Proteus spp	0	3	100	240	0 100
mecA/C	0 3	100	240	0	100	mecA/C	0	3	100	240	0 100
Staphylococcus aureus	2 16	89	218	7	96.8	Staphylococcus aureus	2	21	91.3	218	2 99.1
P.granulosum/avidum	1 2	67	240	0	100	P. granulosum/avidum	0	2	100	241	0 100
Enterococcus faecalis	2 3	60	234	4	98.3	Enterococcus faecalis	2	6	75	234	1 99.6
Streptococcus pyogenes	1 0	0	241	1	99.6	Streptococcus pyogenes	0	1	100	242	0 100
Anaerococcus spp/Peptoniphilus spp	0 0	NA	243	0	100	Anaerococcus spp/Peptoniphilus spp	0	0	NA	243	0 100
Bacteroides fragilis	0 0	NA	242	1	99.6	Bacteroides fragilis	0	0	NA	242	1 99.6
Candida albicans	0 0	NA	243	0	100	Candida albicans	0	0	NA	243	0 100
Candida spp*	0 0	NA	231	0	100	Candida spp*	0	0	NA	231	0 100
Citrobacter spp*	0 0	NA	229	2	99.1	Citrobacter spp*	0	1	100	229	1 99.6
Clostridium perfringens	0 0	NA	242	1	99.6	Clostridium perfringens	0	0	NA	242	1 99.6
Enterobacter spp	0 0	NA	243	0	100	Enterobacter spp	0	0	NA	243	0 100
Enterococcus faecium	0 0	NA	243	0	100	Enterococcus faecium	0	0	NA	243	0 100
Finegoldia magna	0 0	NA	242	1	99.5	Finegoldia magna	0	0	NA	242	1 99.5
Haemophilus influenzae*	0 0	NA	231	0	100	Haemophilus influenzae*	0	0	NA	231	0 100
Klebsiella pneumoniae	0 0	NA	243	0	100	Klebsiella pneumoniae	0	0	NA	243	0 100
Morganella morgannii*	0 0	NA	231	0	100	Morganella morgannii*	0	0	NA	231	0 100
Neisseria gonorrhoeae	0 0	NA	243	0	100	Neisseria gonorrhoeae	0	0	NA	243	0 100
P. micra/P. anaerobius	0 0	NA	242	1	99.6	P.micra/P. anaerobius	0	0	NA	242	1 99.6
Salmonella spp	0 0	NA	243	0	100	Salmonella spp	0	0	NA	243	0 100
Serratia marcescens*	0 0	NA	230	1	99.6	Serratia marcescens*	0	1	100	230	0 100
Streptococcus pneumoniae	0 0	NA	243	0	100	Streptococcus pneumoniae	0	0	NA	243	0 100
*targets tested with 231 samples						*targets tested with 231 samples					

RESULTS

77 positive detections by BJI panel were compared to culture results:

- >43 were concordant
- >34 additional positive detections by the panel were investigated:
 - 24 were confirmed by a comparator assay (PCR followed by sequencing)
 - 10 are under investigation

Investigation of the 6 false negative results is described in the following table:

False negative	Results of investigation							
1 P.granulosum/avidum	Propionibacterium obtained in culture was concluded to be a contaminant by the site, therefore this was a true negative							
1 S.pyogenes	This sample was positive on FA BJI Panel for <i>Streptococcus spp</i> and was identified as <i>S.dysgalactiae</i> by comparator assay, this was a true negative							
1 S.aureus	FA BJI Panel was positive for <i>S.aureus</i> on a second synovial fluid from the same patient, therefore the patient's infection could have been detected							
1 S.aureus 2 E.faecalis	Corresponding samples and strains under investigation							

CONCLUSION

- > These preliminary results showed overall good correlation between FilmArray BJI Panel and culture.
- Additional detections were confirmed in the majority of cases by a comparator PCR followed by sequencing, suggesting that a multiplexed molecular system such as the BJI Panel may be a more sensitive method than culture to detect pathogens in synovial fluid samples.
- > These data confirm the feasibility of a multi-target approach for detection of pathogens and resistance markers in Bone and Joint Infections.

The data presented are a preliminary analysis of a development version of FilmArray BJI Panel and are subject to change upon re-analysis with future versions of the software. At the moment, the FilmArray BJI Panel has not been evaluated by the FDA or other regulatory agencies for In vitro diagnostic use.