Protocols for Laboratory Verification of Performance of the BioFire ${ }^{\circledR}$ Blood Culture Identification 2 (BCID2) Panel

Laboratory Protocols for Use with a ZeptoMetrix NATtrol ${ }^{T M}$ Verification Panel

Purpose

The Clinical Laboratory Improvement Amendments (CLIA), passed in 1988, establishes quality standards for all laboratory testing to ensure the accuracy and reliability of patient test results, regardless of where the test is performed. The CLIA regulations include a requirement for verifying the performance specifications of unmodified, moderate complexity tests cleared or approved by the FDA.

This document provides an example of a verification procedure to assist your laboratory in developing a protocol for the verification of the BioFire BCID2 Panel performance on BioFire ${ }^{\circledR}$ FilmArray ${ }^{\circledR}$ Systems as required by CLIA. A verification scheme, compatible with the BioFire BCID2 Panel, has been designed using nonclinical specimens. This scheme provides positive and negative tests for each organism detected by the BioFire BCID2 Panel and may be easily modified or expanded to meet specific criteria. Day-to-day variation is evaluated by testing each sample on two separate days. To evaluate user-to-user variation, multiple laboratory technicians may test the same sample. In addition, testing patient samples for verification of the performance of the BioFire BCID2 Panel should be done under the guidance of the Laboratory Director but is not described here.

As per the CLIA regulation, the Laboratory Director is ultimately responsible for ensuring that verification procedures meet the appropriate standards for CLIA and applicable laboratory accrediting agencies.

BioFire Intended Use

The BioFire BCID2 Panel is a multiplexed nucleic acid test intended for use with BioFire ${ }^{\circledR}$ FilmArray ${ }^{\circledR} 2.0$ or BioFire ${ }^{\circledR}$ FilmArray ${ }^{\circledR}$ Torch Systems for the simultaneous qualitative detection and identification of multiple bacterial and yeast nucleic acids and select genetic determinants associated with antimicrobial resistance. The BioFire BCID2 Panel test is performed directly on blood culture samples identified as positive by a continuous monitoring blood culture system. Results are intended to be interpreted in conjunction with Gram stain results. The following organism types and subtypes are identified using the BioFire BCID2 Panel:

Gram Positive Bacteria		
Enterococcus faecalis Enterococcus faecium Listeria monocytogenes	Staphylococcus spp. Staphylococcus aureus Staphylococcus epidermidis Staphylococcus lugdunensis	Streptococcus spp. Streptococcus agalactiae (Group B) Streptococcus pneumoniae Streptococcus pyogenes (Group A)
Gram Negative Bacteria		
Acinetobacter calcoaceticus-baumannii complex Bacteroides fragilis Haemophilus influenzae Neisseria meningitidis (encapsulated) Pseudomonas aeruginosa Stenotrophomonas maltophilia		Enterobacterales Enterobacter cloacae complex Escherichia coli Klebsiella aerogenes Klebsiella oxytoca Klebsiella pneumoniae group Proteus spp. Salmonella spp. Serratia marcescens
Yeast		
Candida albicans Candida auris Candida glabrata	Candida krusei Candida parapsilosis Candida tropicalis	Cryptococcus neoformans/gattii

The BioFire BCID2 Panel contains assays for the detection of genetic determinants associated with resistance to methicillin ($m e c A / C$ and $m e c A / C$ in conjunction with MREJ), vancomycin (vanA and vanB), B-lactams including penicillins, cephalosporins, monobactams,
 of potentially antimicrobial-resistant organisms in positive blood culture samples. In addition, the panel includes an assay for the detection of the mobilized genetic determinant mcr-1, an emerging marker of public health importance. The antimicrobial resistance gene or marker detected may or may not be associated with the agent responsible for disease. Negative results for these select antimicrobial resistance gene and marker assays do not indicate susceptibility, as multiple mechanisms of resistance to methicillin, vancomycin, ß-lactams, and colistin exist.

Antimicrobial Resistance Genes				
CTX-M	KPC	mecA/C	NDM	
IMP	$m c r-1$	$m e c A / C ~ a n d ~ M R E J ~(M R S A) ~$	OXA-48-like	VIM

The complete intended use statement and additional information about the use of the BioFire System can be found in the BioFire ${ }^{\circledR}$ Blood Culture Identification 2 (BCID2) Panel Instructions for Use.

Performance Verification: Overview

Two different examples of performance verification procedures are described: (1) a Simple Protocol for the verification of the BioFire BCID2 Panel performance and (2) a Blood Culture Media Protocol that evaluates the BioFire BCID2 Panel performance when organisms are in a blood culture media sample matrix. These protocols are examples of procedures to assist your laboratory in developing a protocol for the verification of BioFire BCID2 Panel performance on BioFire Systems.

The verification procedures described here may be used to evaluate the performance of each assay on the BioFire BCID2 Panel. The performance verification protocols have been designed to take advantage of the multiplex nature of the BioFire BCID2 Panel. Verification testing efficiency is maximized by evaluating multiple target organisms in a single test run. The procedures described below will generate multiple positive and negative detections for each of the BioFire BCID2 assays. The procedures were developed using a BCID2 Verification Panel available from ZeptoMetrix LLC, Buffalo, NY (part number NATBCP2-BIO).

A BioFire System is defined as all BioFire ${ }^{\circledR}$ FilmArray ${ }^{\circledR}$ Instruments or Modules that are connected to and controlled by a single computer system. If the laboratory director chooses not to perform the entire verification protocol on each individual instrument, it is advised that test replicates are evenly distributed among the instruments or modules. An example of a performance verification workflow using 2, 4, or 6 modules is provided in Figure 2.

Clinical/patient samples may be used in place of, or in addition to the verification schemes described here in order to assess clinical sensitivity/specificity and sample matrix effects as part of the performance verification of the BioFire BCID2 Panel.

Table 1. Overview of Verification Protocol

Verification Protocol	Organisms per Pool	Number of Sample Pools	Replicates per Sample Pool	Pouches Required	Expected Positive Results	Expected Negative Results	Approximate Days of Testing
Example							
1: Simple Protocol	6 or 7	5	4	20	≥ 4 per organism	12 -16 per organism	4
Example 2: Blood Culture Media Protocol	6 or 7	5	4	20	≥ 4 per organism	12 -16 per organism	4

${ }^{\text {a }}$ The expected number of positives and negatives per organism is dependent upon the number strains of a particular organism used to complete the verification. The proposed verification procedure recommends multiple K. pneumoniae strains; therefore, the number of expected K. pneumoniae group positives would be 8 and the number of expected negatives would be 12 .
${ }^{\mathrm{b}}$ The approximate number of days for testing assumes a BioFire ${ }^{\circ}$ system configured with one instrument/module.

Performance Verification: Materials

The following materials may be used to perform the verification procedure:
Table 2. Recommended materials for the verification protocols:

Material	Part Number
BioFire® Blood Culture Identification 2 (BCID2) Panel (30-test kit)	BioFire Diagnostics, LLC RFIT-ASY-0147
BioFire® Blood Culture Identification 2 (BCID2) Panel Instructions for Use	BioFire Diagnostics, LLC RFIT-PRT-0841
BioFire® Blood Culture Identification 2 (BCID2) Panel Quick Guide	BioFire Diagnostics, LLC RFIT-PRT-0867
Blood culture media ${ }^{\text {a }}$	BACT/ALERT® FA PLUS, 410851a (or equivalent)
Control Organism ${ }^{\text {b }}$	ZeptoMetrix NATBCP2-BIO
2 mL or 5 mL Sample Tubes	Various manufacturers
Polystyrene tubes with cap (15 mL)	VWR, 82050-278 (or equivalent)
$10-m L$ syringe and 18 gauge needle	VWR, 75846-756 and BD-305196 (or equivalent)
Serological pipette, 5 mL	VWR, 414004-024 (or equivalent)
Disposable Transfer pipets, graduated	VWR050-478 (or equivalent)

${ }^{\text {a }}$ SeeTable 84 in the BioFire® Blood Culture Identification 2 (BCID2) Panel Instructions for Use for other compatible blood culture bottle types.
${ }^{\text {b }}$ Any appropriate source of organism may be used for verification of any or all of the assays in the BioFire BCID2 Panel. However, when alternate organism sources are used (i.e. not the ZeptoMetrix NATBCP2-BIO material), the sample volumes or pooling schemes suggested in the examples below may need to be adjusted.

The BioFire BCID2 Panel contains assays for the detection of genetic determinants of resistance, including the mobilized colistin resistance gene 1 (mcr-1). The NATBCP2-BIO contains inactivated organisms and materials of human and animal origin. Safe practices suggest that the product be considered potentially infectious and to use universal precautions when handling. Refer to local laboratory guidelines for proper handling and disposal guidelines. More information can be found in the BioFire ${ }^{\circledR}$ Blood Culture Identification 2 (BCID2) Panel Instructions for Use and on the Center for Disease Control and Preventions (CDC) website:
Standard and Contact Precautions: https://www.cdc.gov/hicpac/2007IP/2007ip part3.htm Infection control guidelines:
https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html\#a4

Performance Verification Protocols

Simple Protocol

The Simple Protocol evaluates the BioFire BCID2 Panel performance when sample material (ZeptoMetrix NATBCP2-BIO) is pooled in the absence of clinical matrix. The proposed organism pooling scheme (Table 3) should be followed to obtain the expected number of positive and negative results for each assay in a time and resource-efficient manner.

Note: Dilution of ZeptoMetrix BCID2 Verification Panel organisms beyond levels proposed in these guidelines may lead to inconsistent results and is not recommended.

The Simple Protocol and workflow schemes (Figures 1 and 2) illustrate testing 4 replicates per pool for 5 pools over multiple days. This produces a total of 20 verification sample test runs and provides at least 4 positive results and as many as 16 negative results per assay. Some organisms, such as Klebsiella pneumoniae, are represented multiple times. This is done to ensure all antimicrobial resistance genes are represented in the verification protocol.

The number of samples tested per day should be determined by the individual laboratory. This testing scheme can be modified to run more samples per day based on the number of modules in the BioFire System. The pooling scheme provides sufficient volume for testing more replicates if desired.

Pooled samples can be stored overnight (or up to 3 days) at refrigeration temperature ($2-8^{\circ} \mathrm{C}$) for subsequent testing to evaluate day-to-day variation.

Table 3. Proposed Organism Pooling Scheme for Simple Protocol

Organism and Resistance Genes	Approximate Organism Volume	Approximate Pool Volume
Pool 1		
Acinetobacter baumannii	0.2 mL	1.4 mL
Candida albicans	0.2 mL	
Enterococcus faecalis (vanB)	0.2 mL	
Enterococcus faecium (vanA)	0.2 mL	
Staphylococcus aureus (mecA and MREJ)	0.2 mL	
Streptococcus agalactiae	0.2 mL	
Streptococcus pyogenes	0.2 mL	
Pool 2		
Candida glabrata	0.2 mL	1.4 mL
Candida krusei	0.2 mL	
Enterobacter cloacae	0.2 mL	
Haemophilus influenzae	0.2 mL	
Klebsiella oxytoca	0.2 mL	
Listeria monocytogenes	0.2 mL	
Staphylococcus epidermidis	0.2 mL	

Pool 3		
Bacteroides fragilis	0.2 mL	1.4 mL
Candida parapsilosis	0.2 mL	
Candida tropicalis	0.2 mL	
Klebsiella pneumoniae (KPC)	0.2 mL	
Pseudomonas aeruginosa (VIM)	0.2 mL	
Serratia marcescens	0.2 mL	
Streptococcus pneumoniae	0.2 mL	
Pool 4		
Candida auris	0.2 mL	1.4 mL
Escherichia coli Z521 (mcr-1)	0.2 mL	
Escherichia coli Z297 (IMP)	0.2 mL	
Klebsiella aerogenes	0.2 mL	
Neisseria meningitidis	0.2 mL	
Proteus mirabilis	0.2 mL	
Stenotrophomonas maltophilia	0.2 mL	
Pool 5		
Cryptococcus gattii	0.2 mL	1.2 mL
Cryptococcus neoformans	0.2 mL	
Klebsiella pneumoniae Z138 (CTX-M and OXA-48 like)	0.2 mL	
Klebsiella pneumoniae Z460 (CTX-M and NDM)	0.2 mL	
Salmonella enterica typhimurium	0.2 mL	
Staphylococcus lugdunensis	0.2 mL	

Simple Protocol Example

The estimated total time for completion for this Simple Protocol verification example is 4 days for a BioFire System configured with 1 module. A proposed organism pooling scheme is presented above in Table 3. Figure 1 illustrates a simplified workflow schematic. The number of samples tested per day should be determined by the individual laboratory. The protocol can be modified to run more samples per day (or fewer) based upon the number of modules in the BioFire System. The proposed organism pooling scheme in Table 3 provides sufficient volume for testing more replicates, if desired. Figure 2 provides an examples of user-to-user, day-today, and module-to-module testing for labs with multiple BioFire Modules.

Note: It is important to prepare only the number of sample pools that will be tested within 3 days of preparation. The suggestion to prepare 3 sample pools is based on testing up to 6 pouches per day. The number of samples prepared may be increased or decreased based on the laboratory's work schedule and number of modules connected within a BioFire System.

Day 1

1. Organize materials needed (Table 2).
2. Prepare three sample pools (i.e. Pools \#1, 2, and 3) from ZeptoMetrix NATBCP2-BIO control material. Organism vials should be well mixed prior to preparing each pool. Refer to Table 3 for example organism pooling schemes and specific volumes for each pool.
a. Transfer the entire contents of the ZeptoMetrix organism vial (approximately 0.2 mL) into a 2 mL tube. Alternatively, a 5 mL tube may be used.
b. Repeat with the second (and subsequent) organisms to combine the appropriate organisms for each pool into a single tube (approximately 1.4 mL total volume for pools $1-4$ or 1.2 mL for pool 5).
c. Ensure the pooled sample is well mixed prior to removing a sample for testing.
3. Repeat Step 2 for the remaining sample pools (i.e. Pool \#2) to be prepared on Day 1.
4. Test 2 replicates from a single sample pool (i.e. Figure 1: Pool \# 1 replicates A and B). The replicate samples should be tested in a single day by different users.

Note: For each sample, follow instructions in the BioFire ${ }^{\circledR}$ Blood Culture Identification 2 (BCID2) Panel Instruction Booklet and BioFire ${ }^{\circledR}$ Blood Culture Identification 2 (BCID2) Panel Quick Guide for pouch preparation, pouch hydration, sample loading, and sample testing.
5. Repeat Step 4 for the remaining sample pool replicates to be tested that day (i.e. Pool \# 2 replicates A and B)
6. Refrigerate samples $\left(2-8^{\circ} \mathrm{C}\right)$ for up to 3 days for the evaluation of day-to-day variation.

Note: The proposed organism pooling scheme (Table 3) provides sufficient material for running samples as described in Figure. 1. The volume is sufficient for testing more samples if desired.

Day 2

To evaluate day-to-day variation, test replicates from the same sample pools prepared on Day 1 by repeating Step 4 above (i.e. Pool \# 1 replicates C and D).

Day 3

Prepare 2 new sample pools (i.e. pools \#4 and 5) as described in Steps 2-3. Test replicates as described in Step 4 above.

Day 4

To evaluate day-to-day variation, test replicates from the same sample pools prepared on Day 3 by repeating Step 4 above (i.e. Pool \# 4 replicates C and D).

Note: Extreme care should be used in properly handling and disposing of organisms containing antibiotic resistance genes. Follow your institution's guidelines for proper handling and disposal of pathogens or refer to the CDC Infection control guidelines: https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html\#a4

Figure 1. Workflow for the Simplified or the Blood Culture Media Protocols

Figure 2. Example of a Verification workflow for use with multiple BioFire Modules

2 Modules	Module 1			Module 2		
Day 1	Pool $1 /$ User 1	Pool $2 /$ User 2	Pool 3 / User 1	Pool $1 /$ User 2	Pool $2 /$ User 1	Pool 3/ User 2
Day 2	Pool $1 /$ User 2	Pool 21 User 1	Pool 3/ User 2	Pool $1 /$ User 1	Pool $2 /$ User 2	Pool 3 / User1
Day 3	Pool 4 / User 1	Pool 5 User 2		Pool 4 / User 2	Pool 5 / User 1	
Day 4	Pool $4 /$ User 2	Pool 5 I User 1		Pool 4 / User 1	Pool 5 / User 2	

4 Modules	Module 1		Module 2		Module 3		Module 4	
Day 1	Pool $1 /$ User 1	Pool $2 /$ User 2	Pool $1 /$ User 2	Pool $2 /$ User 1	Pool 3 I User 1		Pool 31 User 2	
Day 2	Pool 3 User1		Pool 3/ User 2		Pool $1 /$ User 1	Pool $2 /$ User 2	Pool $1 /$ User 2	Pool $2 /$ User 1
Day 3	Pool 4 / User 1		Pool 4 / User 2		Pool 5 / User 2		Pool 5 / User 1	
Day 4	Pool 5 / User 1		Pool 5 / User 2		Pool 4 / User 1		Pool 4 / User 2	

6 Modules	Module 1	Module 2	Module 3	Module 4	$\begin{gathered} \text { Module } \\ 5 \end{gathered}$	Module 6
Day 1	Pool $1 /$ User 1	Pool $1 /$ User 2	Pool $2 /$ User 1	Pool $2 /$ User 2	Pool 3 User 1	Pool 3/ User 2
Day 2	Pool 3/ User 2	Pool 3 I User1	Pool $1 /$ User 2	Pool $1 /$ User 1	Pool $2 /$ User 2	Pool $2 /$ User 1
Day 3			Pool $4 /$ User 1	Pool 4 / User 2	Pool 5 I User 1	Pool 5 / User 2
Day 4	Pool 5 / User 1	Pool 4 / User 2	Pool 5 User 2		Pool 4 / User 1	

Blood Culture Media Protocol

The Blood Culture Media Protocol evaluates the BioFire BCID2 Panel performance when sample material (ZeptoMetrix NATBCP2-BIO) is pooled in the presence of clinical matrix. The proposed organism pooling scheme (Table 4) should be followed to obtain the expected number of positive and negative results for each assay in a time and resource-efficient manner.

Note: Dilution of organisms beyond levels proposed in these guidelines may lead to inconsistent results and is not recommended.

Figures 1 and 2 (above) illustrate protocol and workflow schemes for testing 4 replicates per pool for 5 pools over multiple days. This produces a total of 20 verification sample test runs and provides at least 4 positive results and as many as 16 negative results per assay. Some organisms, such as Klebsiella pneumoniae, are represented multiple times. This is done to ensure all antimicrobial resistance genes are represented in the verification protocol.

The number of samples tested per day should be determined by the individual laboratory. This testing scheme can be modified to run more samples per day based on the number of
modules in the BioFire ${ }^{\circledR}$ System. The pooling scheme provides sufficient volume for testing more replicates if desired.

Pooled samples can be stored overnight (or up to 3 days) at refrigeration temperature $\left(2-8^{\circ} \mathrm{C}\right)$ for subsequent testing to evaluate day-to-day variation.

Table 4. Proposed Organism Pooling Scheme for the Blood Culture Media Sample Matrix Protocol

Organism and Resistance Genes	Approximate Organism Volume	Volume of Blood Culture Medium	Approximate Final Pool Volume
Pool 1			
Acinetobacter baumannii	0.2 mL	1.4 mL	2.8 mL
Candida albicans	0.2 mL		
Enterococcus faecalis (vanB)	0.2 mL		
Enterococcus faecium (vanA)	0.2 mL		
Staphylococcus aureus (mecA and MREJ)	0.2 mL		
Streptococcus agalactiae	0.2 mL		
Streptococcus pyogenes	0.2 mL		
Pool 2			
Candida glabrata	0.2 mL	1.4 mL	2.8 mL
Candida krusei	0.2 mL		
Enterobacter cloacae	0.2 mL		
Haemophilus influenzae	0.2 mL		
Klebsiella oxytoca	0.2 mL		
Listeria monocytogenes	0.2 mL		
Staphylococcus epidermidis	0.2 mL		
Pool 3			
Bacteroides fragilis	0.2 mL	1.4 mL	2.8 mL
Candida parapsilosis	0.2 mL		
Candida tropicalis	0.2 mL		
Klebsiella pneumoniae (KPC)	0.2 mL		
Pseudomonas aeruginosa (VIM)	0.2 mL		
Serratia marcescens	0.2 mL		
Streptococcus pneumoniae	0.2 mL		
Pool 4			
Candida auris	0.2 mL	1.4 mL	2.8 mL
Escherichia coli Z521 (mcr-1)	0.2 mL		
Escherichia coli Z297 (IMP)	0.2 mL		
Klebsiella aerogenes	0.2 mL		
Neisseria meningitidis	0.2 mL		
Proteus mirabilis	0.2 mL		
Stenotrophomonas maltophilia	0.2 mL		

Pool 5			
Cryptococcus gattii	0.2 mL		
Cryptococcus neoformans	0.2 mL		
Klebsiella pneumoniae Z138 (CTX-M and OXA-48 like)	0.2 mL		2.4 mL
Klebsiella pneumoniae Z460 (CTX-M and NDM)	0.2 mL	1.2 mL	
Salmonella enterica typhimurium	0.2 mL		
Staphylococcus lugdunensis	0.2 mL		

Blood Culture Media Protocol Example

The estimated total time for completion for this Blood Culture Media Protocol verification example is 4 days for a BioFire System configured with 1 module. A proposed organism pooling scheme is presented above in Table 4. Figure 1 illustrates a simplified workflow schematic. The number of samples tested per day should be determined by the individual laboratory. The protocol can be modified to run more samples per day (or fewer) based upon the number of modules in the BioFire System. The proposed organism pooling scheme in Table 4 provides sufficient volume for testing more replicates, if desired. Figure 2 provides an examples of user-to-user, day-to-day, and module-to-module testing for labs with multiple BioFire Modules.

Note: It is important to prepare only the number of sample pools that will be tested within 3 days of preparation. The suggestion to prepare 3 sample pools is based on testing up to 6 pouches per day. The number of samples prepared may be increased or decreased based on the laboratory's work schedule and number of modules connected within a BioFire System.

Pooled samples may be stored overnight (or up to 3 days) at refrigeration temperature ($2-8^{\circ} \mathrm{C}$) for subsequent testing to evaluate day-to-day variation. To evaluate user-to-user variation, multiple laboratory technicians may perform testing.

Day 1

1. Organize materials needed (Table 2).
2. Prepare three sample pools (i.e. Pools \#1, 2, and 3) from ZeptoMetrix NATBCP2-BIO. Organism vials should be well mixed prior to preparing each pool. Refer to Table 3 for example organism pooling schemes and specific volumes for each pool.
a. Use a $10-\mathrm{mL}$ syringe and an 18 gauge needle to remove approximately 8 mL of blood culture medium from a blood culture bottle and transfer it to a 15 mL tube. Care should be taken to minimize transferring resin beads into the sample.
b. Use a serological pipette to add 1.2 or 1.4 mL of blood culture media (as described in Table 4) into a sterile 5 mL tube.
c. Transfer the entire contents of the ZeptoMetrix organism vial (approximately 0.2 mL) into the 5 mL tube containing blood culture media.
d. Repeat for the remaining organisms in the pool to combine the appropriate organisms into a single tube.
e. Ensure the pooled sample is effectively mixed prior to removing a sample for testing.
3. Repeat Step 2 for the remaining sample pools (i.e. Pool \#2) to be prepared on Day 1.
4. Test 2 replicates from a single sample pool (i.e. Figure 1: Pool \# 1 replicates A and B). The replicate samples should be tested in a single day by different users.

Note: For each sample, follow instructions in the BioFire ${ }^{\circledR}$ Blood Culture Identification 2 (BCID2) Panel Instruction Booklet and BioFire ${ }^{\circledR}$ Blood Culture Identification 2 (BCID2) Panel Quick Guide for pouch preparation, pouch hydration, sample loading, and sample testing.
5. Repeat Step 4 for the remaining sample pool replicates to be tested that day (i.e. Pool \# 2 replicates A and B)
6. Refrigerate samples $\left(2-8^{\circ} \mathrm{C}\right)$ for up to 3 days for the evaluation of day-to-day variation.

Note: The proposed organism pooling scheme (Table 3) provides sufficient material for running samples as described in Figure. 1. The volume is sufficient for testing more samples if desired.

Day 2

To evaluate day-to-day variation, test replicates from the same sample pools prepared on Day 1 by repeating Step 4 above (i.e. Pool \# 1 replicates C and D).

Day 3

Prepare 2 new sample pools (i.e. pools \#4 and 5) as described in Steps 2-3. Test replicates as described in Step 4 above.

Day 4

To evaluate day-to-day variation, test replicates from the same sample pools prepared on Day 3 by repeating Step 4 above (i.e. Pool \# 4 replicates C and D).

Note: Extreme care should be used in properly handling and disposing of organisms containing antibiotic resistance genes. Follow your institution's guidelines for proper handling and disposal of pathogens or refer to the CDC Infection control guidelines: https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html\#a4

BioFire Diagnostics, LLC

Expanding the protocols

The protocols described above can be expanded by increasing the number of tests from each of the organism pools. Each organism pool contains sufficient volume for testing additional replicates.

Verification of Loaner, Repaired, and Permanent Replacement Instruments

If it becomes necessary to verify the performance of a loaner, repaired, or permanent replacement instrument, the following protocol may serve as a guideline but should be verified by the Laboratory Director.

1. Select a few specimens and/or proficiency samples (any combination of positives and negatives) previously tested on the BioFire BCID2 Panel. The Laboratory Director should determine the appropriate number of samples to test. Proficiency samples should not be pooled or diluted.
2. Select a set of controls that verify detection of all targets on the BioFire BCID2 Panel.
3. Test the selected samples on the loaner, repaired, or permanent replacement instrument and document the results.

Technical Support Contact Information

BioFire is dedicated to providing the best customer support available. If you have any questions or concerns about this process, please contact the BioFire Technical Support team for assistance.

BioFire Technical Support

Email: support@biofiredx.com
Phone: +1-801-736-6354, select Option 5

All product names, trademarks and registered trademarks are property of their respective owners.

BioFire ${ }^{\circledR}$ Blood Culture Identification 2 (BCID2) Panel Verification Record

