1

2 Multicenter Evaluation of the BioFire FilmArray Respiratory Panel 2 for the Detection of

- 3 Viruses and Bacteria in Nasopharyngeal Swab Samples
- Amy L. Leber,^{1#} Kathy Everhart, ¹ Judy A. Daly,² Aubrey Hopper,² Amanda Harrington,³ Paul
 Schreckenberger,^{3†} Kathleen McKinley,³ Matthew Jones,⁴ Kristen Holmberg,⁴ Bart Kensinger,⁴

- 5 6
- 7 ¹ Nationwide Children's Hospital, Columbus, OH
- 8 ² Primary Children's Medical Center, Salt Lake City, UT
- 9 ³ Loyola University Medical Center, Chicago, IL
- ⁴ BioFire Diagnostics, LLC, Salt Lake City, UT
- 11
- 12
- 13 †deceased 11/29/2016
- 14
- 15
- 16
- 17 # Corresponding author: <u>amy.leber@nationwidechildrens.org</u>
- 18
- 19 Running title: Multicenter Evaluation of the FilmArray RP2

20	ABSTRACT The FilmArray [®] Respiratory Panel 2 (RP2) is a multiplex <i>in vitro</i> diagnostic test
21	for the simultaneous and rapid (~45 minutes) detection of 22 pathogens directly from
22	nasopharyngeal swab (NPS) samples. It contains updated (and in some instances redesigned)
23	assays that improve upon the FilmArray [®] Respiratory Panel (RP; version 1.7), with a faster run
24	time. The organisms identified are adenovirus, coronavirus 229E, coronavirus HKU1,
25	coronavirus NL63, coronavirus OC43, human metapneumovirus, human rhinovirus/enterovirus,
26	influenza A, influenza A H1, influenza A H1-2009, influenza A H3, influenza B, parainfluenza
27	virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, respiratory syncytial
28	virus, Bordetella pertussis, Chlamydia pneumoniae, and Mycoplasma pneumoniae. Two new
29	targets are included in the FilmArray RP2: Middle East respiratory syndrome coronavirus, and
30	Bordetella parapertussis. This study provides data from a multicenter evaluation of 1612
31	prospectively collected NPS samples with performance compared to FilmArray RP or PCR and
32	sequencing. The overall percent agreement between FilmArray RP2 and the comparator testing
33	was 99.2%. The RP2 demonstrated a positive percent agreement of 91.7% or greater for
34	detection of all but three analytes: coronavirus OC43, B. parapertussis, and B. pertussis. The
35	FilmArray RP2 also demonstrated a negative percent agreement of ≥93.8% for all analytes. Of
36	note, the adenovirus assay detects all genotypes with a demonstrated increase in sensitivity. The
37	FilmArray RP2 represents a significant improvement over FilmArray RP with a substantially
38	shorter run time that could aid in diagnosis of respiratory infections in a variety of clinical
39	scenarios.
40	

Journal of Clinica Microbiology

41

42 INTRODUCTION

43 Upper respiratory infections are common and contribute significantly to morbidity and 44 mortality. They are also one of the leading reasons for healthcare visits thus resulting in 45 significant healthcare costs (1, 2). Because the symptoms related to infections with many of the 46 causative agents are very similar, definitive diagnosis requires laboratory testing. Toward that 47 end, the concept of syndromic testing has been widely adopted with testing for multiple agents of 48 respiratory infection at the same time with a single test. By using these syndromic diagnostics, 49 proper antimicrobial stewardship may be better achieved by allowing antimicrobial or antiviral 50 therapy to be given in a timely and appropriate manner (3, 4). Most importantly, it may prevent 51 the unnecessary use of antibiotics in the face of a viral diagnosis. Additionally, studies have 52 demonstrated that rapid diagnosis of respiratory infections can lead to decreased length of stay, 53 better antimicrobial stewardship and better patient cohorting to prevent nosocomial infections.(3, 54 5-8)

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

55 The FilmArray Respiratory Panel (RP) was first introduced as a syndromic multiplex 56 molecular test in 2011 for detection of 15 viruses; additional viral analytes and bacteria were 57 made available with a software update in 2012 following FDA clearance for these new 58 indications. Adenovirus inclusivity was improved with the addition of new primers following an 59 additional FDA clearance in 2013 (version 1.7; v1.7). All FilmArray RP references henceforth in 60 this manuscript are to the current commercially available version of the device as of the 61 publication of this manuscript: FilmArray Respiratory Panel v1.7. 62 In order to ensure that a molecular diagnostic assay remains clinically relevant, and

63 particularly for syndromic assays, it is important to periodically update the test to incorporate

urnal of Clinical	Microbiology

64	new sequence information and to accommodate emerging or previously unrecognized strains or
65	pathogens. To this end, BioFire Diagnostics (BioFire) has updated the FilmArray RP product
66	again by adding new assays to broaden the test's detection capabilities (particularly for
67	adenoviruses), modifying a subset of assays to reflect newly available genetic sequences of
68	currently included analytes, improving chemistry to enhance sensitivity overall, and for the
69	inclusion of new analytes. The new test also has a decreased run time (~45 minutes vs ~65
70	minutes). The organisms detected by FilmArray RP2 include all of those identified by the
71	FilmArray RP: adenovirus, coronavirus 229E (CoV-229E), coronavirus HKU1 (CoV-HKU1),
72	coronavirus NL63 (CoV-NL63), coronavirus OC43 (CoV-OC43), human metapneumovirus
73	(hMPV), human rhinovirus/enterovirus (HRV/EV), influenza A (FluA), influenza A H1 (FluA
74	H1), influenza A H1-2009 (FluA H1-2009), influenza A H3 (FluA H3), influenza B (FluB),
75	parainfluenza virus 1 (PIV1), parainfluenza virus 2 (PIV2), parainfluenza virus 3 (PIV3),
76	parainfluenza virus 4 (PIV4), respiratory syncytial virus (RSV), Bordetella pertussis (detection
77	of ptxP), Chlamydia pneumoniae (previously named Chlamydophila pneumoniae), and
78	Mycoplasma pneumoniae. Two new targets are included: Middle East Respiratory Syndrome
79	Coronavirus (MERS-CoV), and Bordetella parapertussis (detection of IS1001). Note that results
80	for MERS-CoV are masked in the FilmArray RP2 product that is FDA-cleared for the U.S.
81	market. This analyte is reported in the FilmArray [®] Respiratory Panel 2plus (RP2plus) product,
82	which is sold outside the U.S. for testing individuals demonstrating signs/symptoms of
83	respiratory infection, and has been cleared by the U.S. FDA with a modified intended use to aid
84	in the differential diagnosis of MERS-CoV infections only in cases meeting MERS-CoV clinical
85	and/or epidemiological criteria. The FilmArray RP2 is identical to the current FilmArray RP with
86	respect to specimen type, handling, testing workflow, pouch controls, and analysis software.

Journal of Clinical Microbiology

87	In the current study, data are presented for a prospective multicenter clinical evaluation of
88	the performance of the FilmArray RP2 in residual nasopharyngeal swab (NPS) specimens
89	collected in viral transport media (VTM). Performance is compared to the FilmArray RP for 20
90	of 22 analytes (all those in common between the two tests) as well as PCR followed by
91	bidirectional sequencing for <i>B. parapertussis</i> . MERS-CoV was not circulating in the U.S. during
92	the time of the study; therefore all specimens were assumed to be negative and no comparator
93	testing was performed for this analyte.
94	
95	MATERIALS AND METHODS
96	Clinical Specimens. The study was conducted at three geographically distinct U.S. sites
97	(Nationwide Children's Hospital – Columbus, OH, Loyola University Medical Center –
98	Maywood, IL, and Primary Children's Hospital - Salt Lake City, UT) over a period of
99	approximately six months (January – March and September – November 2016). Between
100	January and March 2016, specimens were collected and immediately frozen for later testing.
101	Between September and November 2016, specimens were collected and tested fresh. Specimens
102	meeting the following inclusion criteria were selected: specimen was an NPS collected in VTM
103	with adequate residual volume (≥1.5ml), specimen was tested with FilmArray RP as Standard Of
104	Care (SOC), and the specimen was held at room temperature for less than or equal to 4 hours or
105	4°C for less than or equal to three days before enrollment. A waiver of the informed consent
106	requirement was obtained from the Institutional Review Boards (IRBs) at each study site for the
107	use of residual NPS specimens. Clinical and demographic data were collected including
108	hospitalization status at the time of specimen collection, the results of the clinician-ordered SOC
109	FilmArray RP test, date of specimen collection, subject sex, and subject age at time of collection.

σ	
2	>
C	ີວ
Ξ.	_ C
\mathcal{I}	C
ᅕ	ंट
0	C
σ	Ē
Ē	. <u>-</u>
<u> </u>	<

110	FilmArray RP2 Testing. Approximately 300 μ l of specimen was subject to FilmArray
111	RP2 testing according to manufacturer's instructions(9). All sample processing occurred in a
112	biosafety cabinet with operators wearing gloves and other appropriate personal protective
113	equipment. One sample was processed at a time and cleaning of work areas was done in
114	accordance with manufacturer's instructions(9). The FilmArray RP2 test consists of automated
115	nucleic acid extraction, reverse transcription, nucleic acid amplification, and results analysis in
116	approximately 45 minutes per run (i.e. per specimen). The FilmArray® Software performs
117	automated result analysis with each target in a valid run reported as 'Detected' or 'Not Detected'.
118	If either internal control fails, the software automatically provides a result of 'Invalid' for all
119	panel analytes. There are 22 targets as shown in TABLE 1, two of which are new to the
120	FilmArray RP2. This study was conducted with an IUO version of the FilmArray RP2 that is
121	identical to the final FDA-cleared/CE-IVD marked version. Note: Results for MERS-CoV are
122	reported in this manuscript, but are only available for the FilmArray RP2plus version of the
123	product.
124	
125	Comparator Testing. Comparator testing consisted of SOC FilmArray RP testing
126	performed at the source laboratory for all analytes in common between FilmArray RP and
127	FilmArray RP2 (all analytes except MERS-CoV and B. parapertussis). All specimens were

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

128 assumed negative for MERS-CoV, as it was not circulating in the U.S. during the time of129 enrollment for the study.

For *B. parapertussis*, two PCR assays targeting IS*1001* (the same target identified by
FilmArray RP2) followed by bidirectional sequencing were used as the comparator method.
Nucleic acid was extracted from specimens using a MagNA Pure LC 2.0 automated system with

133

134	Both real-time PCR comparator assays were validated and found to have an LoD that was
135	equivalent to the FilmArray RP2 assay. Testing was performed at BioFire in a blinded manner.
136	Comparator assays were only considered positive when a bidirectional sequencing result of
137	adequate quality was found to match a sequence for the expected analyte with an E-value of
138	1.0E-30 or lower when compared to the Genbank nucleotide database [Basic Local Alignment
139	Search Tool (BLASTn) with default settings]. A specimen was considered to be "positive" with
140	a sequence-confirmed result from either assay.
141	Results and Discrepant Analysis. A FilmArray RP2 result was considered a true
142	positive (TP) or true negative (TN) only when it agreed with the result from the comparator
143	method. Discrepant analysis ensued when results were discordant, i.e. false positive (FP) or false
144	negative (FN) results. When sufficient specimen volume was available, discordant specimens
145	were investigated using a combination of re-testing with FilmArray RP2 or comparator methods
146	as well as testing with additional, independent molecular assays. For additional analysis of
147	adenovirus targets, specimens were also tested with a combination of PCR assays targeting the
148	DBP, penton, and pol genes (combined with bidirectional sequence analysis) (9) and the results
149	of standard of care testing at one of the study sites (Nationwide Children's Hospital; NCH) using
150	an adenovirus laboratory developed test (LDT) PCR targeting the hexon gene as described
151	previously (10-12). Note that the performance data for positive percent agreement (PPA) and
152	negative percent agreement (NPA) presented in this manuscript consist of unresolved data as
153	presented in the package insert for the FDA-cleared test; discrepancy investigation is provided
154	but was not used to recalculate performance data.

the Total Nucleic Acid Isolation - High Performance Kit (Roche Diagnostics, Indianapolis, IN).

Statistical Analysis. The exact binomial two-sided 95% confidence intervals (95% CI)
were calculated for performance measures according to the Wilson score method.

157

158 RESULTS

159 **Demographics**. A total of 1612 prospective study specimens collected from 160 geographically/demographically diverse subject populations were analyzed in this study. Overall, 161 the study included specimens from more male than female subjects (54%, 867/1612 and 46%, 162 745/1612, respectively). Most specimens were from pediatric subjects: 55% of the specimens 163 were from children aged 5 and under, 21% were from those aged 6-21, 17% were from adults 164 over the age of 50, and 8% were from adults aged 22-49. The majority of the specimens were 165 obtained from hospitalized subjects and those visiting the emergency department (40%, 166 640/1612 and 40%, 643/1612, respectively), and 20% were obtained from subjects seen in an 167 outpatient setting (329/1612). 168 FilmArray RP2 test performance. A total of 1623 specimens met the inclusion criteria 169 and were initially tested in the clinical evaluation. The overall success rate on the initial test of 170 these specimens was 99.3% (1611/1623); 12 tests were unsuccessful (one due to an incomplete 171 test, one due to an instrument error, and 10 due to control failures). Eleven of these specimens 172 were successfully retested. In addition another 10 specimens were later excluded for protocol 173 reasons, resulting in a total of 1612 specimens included in the data analysis.

Summary of FilmArray RP2 findings. The FilmArray RP2 detected at least one analyte
in 1020 of the 1612 specimens tested, yielding an overall positivity rate of 63.3% as shown in
TABLE 2. The highest detection rate was seen in young children (≤ 5 years of age). The relative
prevalence of each analyte among the positive specimens detected by the FilmArray RP2 is

8

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

Journal of Clinical

<u></u>		
scri	178	presented in TABLE 3. The most prevalent organisms detected during this study were HRV/EV,
anu	179	RSV, adenovirus, and FluA, which were found in 502 (31.1%), 199 (12.3%), 118 (7.3%), and 81
Accepted Manuscrip	180	(5.0%) respectively. If taken together, coronaviruses (CoV-229E, HKU1, NL63, and OC43)
oted	181	were the third most prevalent target with 159 (9.9%) detections. For FluA H1 and the MERS-
	182	CoV targets, no positive analyte detections occurred in this prospective sample set. All other
Ă	183	analytes were detected in less than 79 ($< 4.9\%$) specimens.
	184	The summary of performance characteristics for individual FilmArray RP2 targets is
	185	presented in TABLE 4. PPA and NPA were calculated with respect to the comparator methods
Journal of Clinical Microbiology	186	along with 95% CI. The FilmArray RP2 demonstrated a PPA of 91.7% or greater for all but three
	187	analytes. Nine of 22 analytes demonstrated a PPA of 100%: CoV-HKU1, CoV-NL63, FluA,
	188	FluA H1-2009, FluA H3, FluB, PIV1, PIV4, and C. pneumoniae. Eight other targets
	189	demonstrated PPA of $< 100\%$, but $\ge 90.0\%$: adenovirus, CoV-229E, hMPV, HRV/EV, PIV2,
al of C robiolo	190	PIV3, RSV, and <i>M. pneumoniae</i> . For FluA H1 and MERS-CoV, no PPA could be calculated.
Journe Mic	191	The three analytes demonstrating a PPA < 90.0% were CoV-OC43 (80.5%), B. parapertussis
	192	(85.7%), and B. pertussis (66.7%). Additionally, nine analytes demonstrated a lower bound of
	193	the two-sided 95% CI $<$ 80.0% due to few or no observations in the study. Overall, the
	194	FilmArray RP2 demonstrated a NPA of \geq 93.5% for all analytes, with lower bounds of the two-
	195	sided 95% CI of \geq 91.9%.
	196	Comparator Analysis and Discrepancy Investigation. There were a total of 33.843

- Comparator Analysis and Discrepancy Investigation. There were a total of 33,843 196
- 197 analyzable FilmArray RP2 organism results for the 1612 specimens. The overall percent
- 198 agreement between FilmArray RP2 and the comparator testing was 99.2%
- 199 (33,586/33,843). There were 1329 detected organism results with the FilmArray RP2; the
- 200 comparator methods were positive for 1138 analytes. The overall PPA with respect to the

Journal of Clinical Microbiology

JCM

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

201	comparator method was 97.1% (1105/1138). There were 32,481 not detected results with the
202	FilmArray RP2; the comparator methods were negative for 32,705 analytes. The overall NPA
203	with respect to the comparator method was 99.3% (32,481/32,705).
204	Using comparator testing as truth, there were 224 FP detections and 33 FN detections
205	overall; additional discrepancy analysis was performed for these 257 samples. For the 114 FP
206	cases (51%) along with the 14 FN cases (42%) there was supportive evidence for the FilmArray
207	RP2 result, bringing the adjudicated overall concordance for the positive and negative results to
208	98.5% and 99.7% respectively. A summary of the discrepancy investigation is presented in
209	TABLE 5.
210	For the viral analytes, FilmArray RP2 detected a total of 1286 viral analytes. Using the
211	comparator as truth, the overall PPA and NPA are 97.3% (1069/1099) and 99.2%
212	(26,079/26,296) respectively. The results for several analytes of significant interest are further
213	detailed below.
214	For adenovirus, a significant increase in detections was observed in comparison to
215	FilmArray RP with a total of 118 detections, of which 48 (40.7%) were FP. FP specimens with
216	sufficient volume were retested with the FilmArray RP to see if the original result had been an
217	anomaly. When possible, specimens were also tested with a combination of PCR/sequencing
218	assays targeting the DBP (N=38), penton (N=25), and pol (N=16) genes and the results of the
219	NCH LDT assay (N=11). Combined, these investigations found additional evidence of
220	adenovirus presence in 40 of the 48 FP specimens (TABLE 6). All 40 of these specimens had
221	late amplification on the FilmArray RP2 test suggestive of low levels of analyte in these
222	specimens. The four FP specimens for which the FilmArray RP retest was positive also had late
223	amplification suggestive of a low level of analyte.

lournal of Clinical Microbiology There were also 4 FN results for adenovirus. Additional discrepant analysis for these specimens included retesting with FilmArray RP2, a combination of PCR assays as above, and any available NCH LDT results for adenovirus. Combined, these investigations found additional evidence of adenovirus presence in three of the four FN specimens. Analysis of the FN specimen for which the FilmArray RP2 retest was positive indicated late amplification suggesting low analyte levels. All FN were adenovirus species C based on sequence analysis. A comprehensive summary of the adenovirus discordant analysis is provided in TABLE 6.

231 Among the coronaviruses, all but one of the four targets demonstrated good performance 232 with PPA \geq 91% and NPA \geq 99.1%. The exception was CoV-OC43, which demonstrated a PPA 233 of 80.5%. The majority of FN specimens observed were due to a known cross-reactivity in the 234 comparator method (see package insert; https://www.online-ifu.com/ITI0040): a FilmArray RP 235 Detected result for Coronavirus OC43 due to cross-reactivity with CoV-HKU1 is suspected 236 whenever FilmArray RP reports detections for both CoV-HKU1 and CoV-OC43. This cross 237 reactivity has been corrected by redesign of the CoV-OC43 assay for FilmArray RP2. Six of 238 eight FilmArray RP2 FN specimens were TP for CoV-HKU1, i.e. co-detections reported by 239 FilmArray RP and suggestive of this known cross-reactivity. As stated previously no MERS-240 CoV was detected in the cohort. Of note is a NPA of 100%, indicating a lack of cross-reactivity 241 with other coronaviruses. Data for some archived MERS-CoV specimens and contrived MERS-242 CoV samples are provided in the manufacturer's package insert for FilmArray RP2plus (9). 243 The FluA targets showed no FP or FN detections; however there were no positive 244 detections for FluA H1 during the study period which was predominated by FluA H1-2009. For 245 FluB there were two FP detections which were confirmed on further investigation as TP.

246 Influenza A, Influenza A H1, Influenza A H1-2009, and Influenza A H3 results were excluded

Journal of Clinical Microbioloay

_	
-	
0	
1	
0	
_	_
	0
	\sim
_	0
	_
	\sim
	0
-	
	\sim
. 🔾 1	
	0
	0
_	
\mathbf{O}	
-	0
E	-
-	<u> </u>
	-

from analyses for three specimens due to initial results of "Influenza A equivocal" or "Influenza
A no subtype detected" from either FilmArray RP2 or FilmArray RP testing and insufficient
specimen volume for re-testing.
Detections for HRV/EV were numerous with a total of 502, the highest of all detections
in the trial. There were 77 FP results and 11 FN results. Specimens with sufficient volume were
retested with FilmArray RP or FilmArray RP2. When possible, specimens were also tested with
a combination of five PCR assays targeting the *5'UTR* gene. For the FP samples, 29 were

254 positive with a FilmArray RP retest; late amplification for 28 of the 29 specimens were

suggestive of low levels of analyte. Four more were positive with PCR assays. For the FN

samples, four specimens were positive with FilmArray RP2 on repeat testing and one was

257 positive with PCR assays. Three of the four FN specimen for which the FilmArray RP2 retest

258 was positive had late amplification suggestive of low levels of analyte.

RSV detections totaled 199 making it the second most common analyte. Eight of 24 FP
specimens were observed to contain RSV by independent molecular methods or retesting with
FilmArray RP. These may have been missed by the SOC FilmArray RP test due to an estimated
hundredfold difference in LoD between FilmArray RP and FilmArray RP2 (9).

Using the comparator as truth, the overall PPA and NPA are 92.3% (36/39) and 99.9% (6402/6409) respectively for all bacterial targets. The number of detections for each bacterial target was low (≤ 6) with the exception of *M. pneumoniae* (N=28) (TABLE.4). The two bacterial analytes demonstrating a PPA < 90.0% were both low prevalence: *B. parapertussis* (N = 6), and *B. pertussis* (N = 3).

268 The bacterial targets tended to be single analyte detections (*B. pertussis* 3/3, *C.*

269 pneumoniae 5/6, and M. pneumoniae 21/28) with no co-pathogen present. For B. parapertussis,

Journal of Clinical Microbiology all six detections were in the context of a co-detection with one or more viruses. No sample had
two bacterial targets detected. Discordant analysis for the bacterial targets in shown in TABLE
5.

274 This study of the FilmArray RP2 demonstrated the performance of the test in a large 275 prospective study of 1612 residual NPS samples with 33,843 results generated. These data are 276 significant as this is a substantial change compared to RP and the test will be adopted for use in a 277 large number of clinical laboratories. The number of positive detections was relatively high for 278 most organisms; notable exceptions were MERS-CoV and FluA H1, which were not circulating 279 in the study populations during the study period. The FilmArray testing system was shown to be 280 reliable with very few failures (99.3% success on the initial test attempt) and rapid with results 281 available in approximately 45 minutes, which is shorter than FilmArray RP (approximately 65 282 minutes run time). The data presented here along with testing of archived positive NPS in VTM 283 specimens and contrived specimens (not shown) (9) were used as part of the regulatory 284 submissions for the FilmArray RP2 and RP2*plus*, which received 510(k) clearance in the U.S. 285 (RP2) and CE/IVD marking in the EU (RP2plus) in June 2017. FilmArray RP2plus received de 286 novo clearance in the U.S. in November, 2017. 287 Periodically updating testing that has been implemented is an important concept. The 288 College of American Pathologists covers this for lab-developed testing in its Microbiology 289 checklist stating that laboratories should have written policies and procedures to evaluate nucleic 290 acid tests for compatibility with currently circulating microbial strains (13). For testing cleared

- by the FDA, FilmArray RP2 represents the fourth iteration of the multiplex panel since its
- 292 introduction in 2011, providing an update of the primer probes based on a reexamination of
- known sequences for the majority of the pathogens and adjustment of the assay conditions to
- maximize performance. As noted there were a significant number of detections by RP2 that were
- 295 not detected by RP (n=224). The overall design goal for RP2 was to increase sensitivity for all

ournal of Clinica Microbioloav

Journa
-
-
(

ournal of Clinical Microbiology analytes relative to RP, and this may account for a significant number of the observed FP
detections. This is supported by LoD studies reported in the product inserts (9, 14) and the
discordant analysis performed in this study. The increased inclusivity/sensitivity and decreased
time to result to 45 minutes for the FilmArray RP2 may lead to improvements in outcomes such
as length of stay or proper stewardship and warrant further study.

302 Viruses are a common cause of upper respiratory infections in both adult and pediatric
303 population and this was also seen in our study cohort. Viral detections were notably higher than
304 those of the bacterial targets (1286 viral vs. 43 bacterial detections). The FilmArray RP2 showed
305 an increased positive detection rate for all viral targets in comparison to FilmArray RP (217
306 more detections with 107 supported by additional discrepancy investigation) with the exception

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

307 of Coronavirus OC43 (TABLE 5) reflecting the increased sensitivity and inclusivity of

308 FilmArray RP2.

301

309 The most common viral analyte was HRV/EV with a total of 502 detections versus 436 310 with FilmArray RP. The increased HRV/EV detections may or may not be associated with true 311 disease causation as the majority (61.2%, see Supplemental TABLE 1) were in the context of co-312 detection with other viral targets. Rhinovirus has been reported as a common detection among 313 asymptomatic individuals with rates varying from 8 to 50% depending on the study (15-17). 314 While FilmArray RP2 was updated to broaden inclusivity, there was no change to specificity for 315 HRV/EV so that there are still cross reactions with enteroviruses, hence the 316 rhinovirus/enterovirus designation.

317 One of the more extensive modifications occurred for the detection of adenovirus.

318 Previous studies by Leber et al. demonstrated a lack of sensitivity with FilmArray RP for

319 adenovirus types A, D, and F (12) despite an earlier redesign on the FilmArray RP in 2013 (18).

Journal of Clinical Microbiology

320	The redesign of the FilmArray RP2 specifically targeted all genotypes to include A-F genotypes,
321	not only those typically associated with respiratory infections (types B, C, and E). In our cohort,
322	genotypes A, B, C, D, and F were demonstrated to be detected by FilmArray RP2. Detection of
323	all genotypes is important particularly in the immunocompromised where the finding of
324	adenovirus of any genotype in the NPS in VTM may precede systemic infections (11, 12). In
325	addition, the identification of species F in respiratory specimens has been reported in patients
326	with respiratory illness (19) as well as in 2.3% of pediatric patient samples which were obtained
327	after routine adenoidectomy/tonsillectomy (20).
328 329 330	There were relatively low numbers of bacterial detections with the FilmArray RP2
331	overall (N= 43). The reasons for this are likely due to true disease prevalence differences during
332	the study period. Also, as seen in our data (Supplemental TABLE 1), the co-detection of
333	bacteria and viruses is not common, particularly with B. pertussis as has been previously
334	reported (21, 22). The target gene for <i>B. pertussis</i> in both FilmArray RP and FilmArray RP2 is
335	the toxin promoter region. This single copy gene is known to be more specific than the more
336	commonly used insertion sequences 481 (IS481) gene that is a multicopy target present in
337	several Bordetella species. While having greater specificity, the toxin gene target may be less
338	sensitive as has been reported (23). The diagnosis of pertussis-like illness is improved with the
339	inclusion of the insertion sequence element 1001 target for <i>B. parapertussis</i> in FilmArray RP2.
340	B. parapertussis is known to cause a pertussis-like illness and can co-circulate with other
341	Bordetella species (24, 25). The prevalence of B. parapertussis is uncertain as it is not a
342	reportable disease like B. pertussis, and is not tested for as commonly (26, 27). M. pneumoniae
343	was the most common of the bacterial analytes with 28 detections, more than with FilmArray

Journal of Clinical Microbioloay

JCM

RP. However, it should be noted that use of an NPS specimen for detection of *M. pneumoniae*may be suboptimal particularly when diagnosing lower respiratory tract infection (28, 29).

347 Overall the percentage of discrepant results was low (0.76%, N=257, TABLE 5), 348 suggesting that the previous version of the FilmArray RP had relatively robust performance. 349 Discrepancy analysis using FilmArray RP retests and PCR and bidirectional sequencing 350 confirmed 114 of 224 FP (51%); strong evidence that FilmArray RP2 has increased sensitivity 351 compared to FilmArray RP. There are some limitations for this study. This was a prospective 352 study; however, some samples were frozen at \leq -70°C prior to testing. However, data indicated 353 that the frozen storage did not significantly affect performance (9). The study period bridges one 354 calendar year (2016) and includes only two partial respiratory seasons so variations in circulating 355 strains, particularly FluA, are limited. The comparator method for 20 of the targets was 356 FilmArray RP. Data concerning FilmArray RP2 performance compared to other amplified 357 platforms or culture is not provided and will await other studies. Finally, the lack of detections 358 for MERS-CoV and FluA H1 in the prospective study limited data on the performance for these 359 targets. 360 A significant redesign for the FilmArray RP2 has demonstrated excellent sensitivity and 361 specificity in this multicenter clinical trial. This is an important step both for individual 362 improvements in pathogen detection and as recognition by the manufacturer that continuous

improvements with monitoring and inclusion of new or emerging strains or species is important.
Both have been incorporated into the design of FilmArray RP2, improving its performance for
the detection of infectious agents involved in respiratory infections. These changes include both
new targets (MERS-CoV and *B. parapertussis*), improvements to existing targets, and decreased

17

Journal of Clinical Microbioloay

JCM

367 time to result. These improvements, combined with the simplicity of the FilmArray RP2 testing

368 process and a shorter time to result, make it a significant improvement in diagnostic testing.

369

370 ACKNOWLEDGEMENTS

The authors would like to thank the dedicated professionals across all the study sites, without

372 whom this work would have not been possible. This study was designed and funded by BioFire

373 Diagnostics. FilmArray RP2 was performed at the clinical study sites while PCR for comparator

and discrepant analysis was performed at BioFire Diagnostics. ALL wrote and edited this

375 manuscript. BioFire employees (MJ, KH and BK) designed the study and wrote portions of the

376 Methods section only; they edited the manuscript only for accuracy. All other authors edited the

377 manuscript and provided input on the data presented. All authors have received research funding

378 from BioFire for this study. Additionally, ALL has served on a BioFire Advisory panel.

379 **References:**

- Molinari NA, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM,
 Weintraub E, Bridges CB. 2007. The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 25:5086-5096.
- Fendrick AM, Monto AS, Nightengale B, Sarnes M. 2003. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch Intern Med 163:487-494.
- Rogers BB, Shankar P, Jerris RC, Kotzbauer D, Anderson EJ, Watson JR, O'Brien
 LA, Uwindatwa F, McNamara K, Bost JE. 2015. Impact of a rapid respiratory panel
 test on patient outcomes. Arch Pathol Lab Med 139:636-641.
- Lowe CF, Payne M, Puddicombe D, Mah A, Wong D, Kirkwood A, Hull MW,
 Leung V. 2017. Antimicrobial stewardship for hospitalized patients with viral respiratory
 tract infections. Am J Infect Control 45:872-875.
- Rappo U, Schuetz AN, Jenkins SG, Calfee DP, Walsh TJ, Wells MT, Hollenberg JP,
 Glesby MJ. 2016. Impact of Early Detection of Respiratory Viruses by Multiplex PCR
 Assay on Clinical Outcomes in Adult Patients. J Clin Microbiol 54:2096-2103.
- Green DA, Hitoaliaj L, Kotansky B, Campbell SM, Peaper DR. 2016. Clinical Utility
 of On-Demand Multiplex Respiratory Pathogen Testing among Adult Outpatients. J Clin
 Microbiol 54:2950-2955.
- Santolaya ME, Alvarez AM, Acuna M, Aviles CL, Salgado C, Tordecilla J, Varas M, Venegas M, Villarroel M, Zubieta M, Toso A, Bataszew A, Farfan MJ, de la Maza V, Vergara A, Valenzuela R, Torres JP. 2017. Efficacy and safety of withholding antimicrobial treatment in children with cancer, fever and neutropenia, with a demonstrated viral respiratory infection: a randomized clinical trial. Clin Microbiol Infect 23:173-178.

- 8. Subramony A, Zachariah P, Krones A, Whittier S, Saiman L. 2016. Impact of
 Multiplex Polymerase Chain Reaction Testing for Respiratory Pathogens on Healthcare
 Resource Utilization for Pediatric Inpatients. J Pediatr 173:196-201 e192.
- 407 9. BioFire Diagnostics L. 2017. FilmArray Respiratory Panel 2 (RP2) Instruction Booklet
 408 RFIT-ASY-0129
- 409 10. Song E, Kajon AE, Wang H, Salamon D, Texter K, Ramilo O, Leber A, Jaggi P.
 410 2016. Clinical and Virologic Characteristics May Aid Distinction of Acute Adenovirus
 411 Disease from Kawasaki Disease with Incidental Adenovirus Detection. J Pediatr
 412 170:325-330.
- Song E, Wang H, Kajon AE, Salamon D, Dong S, Ramilo O, Leber A, Jaggi P. 2016.
 Diagnosis of Pediatric Acute Adenovirus Infections: Is a Positive PCR Sufficient? Pediatr
 Infect Dis J 35:827-834.
- 416
 12. Song E, Wang H, Salamon D, Jaggi P, Leber A. 2016. Performance Characteristics of
 417
 418
 418
 418
 419
 418
 419
 418
 419
 418
 419
 418
 419
 418
 419
 418
 419
 419
 418
 419
 419
 418
 419
 419
 419
 419
 410
 410
 410
 411
 411
 411
 412
 412
 413
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414
 414</
- 420 13. College of American Pathologists. 2017. Microbiology Checklist CAP, Northfield, IL.
- 421 14. BioFire Diagnostics L. 2015. FilmArray Respiratory Panel (RP) Instruction Booklet
 422 RFIT-ASY-0125.

423	15.	Heinonen S, Jartti T, Garcia C, Oliva S, Smitherman C, Anguiano E, de
423	15.	Steenhuijsen Piters WA, Vuorinen T, Ruuskanen O, Dimo B, Suarez NM, Pascual
425		V, Ramilo O, Mejias A. 2016. Rhinovirus Detection in Symptomatic and Asymptomatic
426		Children: Value of Host Transcriptome Analysis. Am J Respir Crit Care Med 193: 772-
427		782.
428	16.	Jansen RR, Wieringa J, Koekkoek SM, Visser CE, Pajkrt D, Molenkamp R, de Jong
429	10.	MD , Schinkel J. 2011. Frequent detection of respiratory viruses without symptoms:
430		toward defining clinically relevant cutoff values. J Clin Microbiol 49: 2631-2636.
431	17.	Jartti T, Jartti L, Peltola V, Waris M, Ruuskanen O. 2008. Identification of
432	17.	respiratory viruses in asymptomatic subjects: asymptomatic respiratory virus infections.
433		Pediatr Infect Dis J 27: 1103-1107.
434	18.	Doern CD, Lacey D, Huang R, Haag C. 2013. Evaluation and implementation of
435	10.	FilmArray version 1.7 for improved detection of adenovirus respiratory tract infection. J
436		Clin Microbiol 51: 4036-4039.
437	19.	Echavarria M, Maldonado D, Elbert G, Videla C, Rappaport R, Carballal G. 2006.
438	17.	Use of PCR to demonstrate presence of adenovirus species B, C, or F as well as
439		coinfection with two adenovirus species in children with flu-like symptoms. J Clin
440		Microbiol 44:625-627.
441	20.	Alkhalaf MA, Guiver M, Cooper RJ. 2013. Prevalence and quantitation of adenovirus
442	20.	DNA from human tonsil and adenoid tissues. J Med Virol 85:1947-1954.
443	21.	Heininger U, Burckhardt MA. 2011. Bordetella pertussis and concomitant viral
444	21.	respiratory tract infections are rare in children with cough illness. Pediatr Infect Dis J
445		30: 640-644.
446	22.	Piedra PA, Mansbach JM, Jewell AM, Thakar SD, Grant CC, Sullivan AF,
447		Espinola JA, Camargo CA, Jr. 2015. Bordetella pertussis is an uncommon pathogen in
448		children hospitalized with bronchiolitis during the winter season. Pediatr Infect Dis J
449		34: 566-570.
450	23.	Jerris RC, Williams SR, MacDonald HJ, Ingebrigtsen DR, Westblade LF, Rogers
451		BB. 2015. Testing implications of varying targets for Bordetella pertussis: comparison of
452		the FilmArray Respiratory Panel and the Focus B. pertussis PCR assay. J Clin Pathol
453		68: 394-396.
454	24.	Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical
455		manifestations of respiratory infections due to Bordetella pertussis and other Bordetella
456		subspecies. Clin Microbiol Rev 18:326-382.
457	25.	Spicer KB, Salamon D, Cummins C, Leber A, Rodgers LE, Marcon MJ. 2014.
458		Occurrence of 3 Bordetella species during an outbreak of cough illness in Ohio:
459		epidemiology, clinical features, laboratory findings and antimicrobial susceptibility.
460		Pediatr Infect Dis J 33:e162-167.
461	26.	Cherry JD, Seaton BL. 2012. Patterns of Bordetella parapertussis respiratory illnesses:
462		2008-2010. Clin Infect Dis 54: 534-537.
463	27.	Zouari A, Smaoui H, Brun D, Njamkepo E, Sghaier S, Zouari E, Felix R, Menif K,
464		Ben Jaballah N, Guiso N, Kechrid A. 2012. Prevalence of Bordetella pertussis and
465		Bordetella parapertussis infections in Tunisian hospitalized infants: results of a 4-year
466		prospective study. Diagn Microbiol Infect Dis 72:303-317.

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

20

467	28.	Kakuya F, Kinebuchi T, Okubo H, Matsuo K. 2017. Comparison of Oropharyngeal
468		and Nasopharyngeal Swab Specimens for the Detection of Mycoplasma pneumoniae in
469		Children with Lower Respiratory Tract Infection. J Pediatr 189:218-221.
470	29.	Cho MC, Kim H, An D, Lee M, Noh SA, Kim MN, Chong YP, Woo JH. 2012.
471		Comparison of sputum and nasopharyngeal swab specimens for molecular diagnosis of
472		Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella pneumophila.
473		Ann Lab Med 32: 133-138.
474		

475

476 **TABLE 1** Analytes Detected by the FilmArray RP2

^b Assay modified for broader inclusivity.

Analyte	Change relative to RP ^a
Viruses	
Adenovirus	Updated primers ^b ,
	additional assays
Coronavirus 229E	Updated primers
Coronavirus HKU1	Not Modified
Coronavirus NL63	Not Modified
Coronavirus OC43	Updated primers
Human Metapneumovirus	Updated primers
Human Rhinovirus/Enterovirus	Updated primers
Influenza A	Updated primers
Influenza A H1	Updated primers
Influenza A H1-2009	Not Modified
Influenza A H3	Updated primers
Influenza B	Not Modified
Middle East Respiratory Syndrome Coronavirus (MERS-CoV)	New
Parainfluenza Virus 1	Updated primers
Parainfluenza Virus 2	Updated primers
Parainfluenza Virus 3	Updated primers
Parainfluenza Virus 4	Updated primers
Respiratory Syncytial Virus	Updated primers
Bacteria	
Bordetella parapertussis (IS1001)	New
Bordetella pertussis (ptxP)	Not Modified
Chlamydia pneumoniae	Not Modified
Mycoplasma pneumoniae	Updated primers

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

477 478

479

480 481 TABLE 2 Positivity Rate for FilmArray RP2 Panel: For all Samples and By Age Groupings

All Samples (n=1612)							
No. % of Tota							
Negative Samples	592	36.7					
Positive Samples	1020	63.3					
Single Detections	775	48.1					
Co-Detections	245	15.2					
Positivity by A	ge Gro	uping					
	No.	% of Total					
≤5 years (n=885)	698	78.9					
	100	59.2					
6-21 years (n=331)	196	39.2					
6-21 years (n=331) 22-49 years (n=128)	53	41.4					

482

483 484

Journal of Clinical Microbiology

Accepted Manuscript Posted Online

485

.

TABLE 3 Prevalence of Detected Analytes Stratified by Age Group and Number

486 487

FilmArray Result	Overall		$\leq 5 \text{ yr}$		6 - 21 yr		22 - 49 yr		$\geq 50 \text{ yr}$	
	(N=10 #	· · · ·	(N=8	· ·	(N=3)	-	(N=12	<u> </u>	(N=20	/
	#	%	#	%	#	%	#	%	#	%
		1	Viruse			1	Г		Г	1
Adenovirus	118	7.3	96	10.8	18	5.4	2	1.6	2	0.7
Coronavirus 229E	16	1.0	3	0.3	7	2.1	1	0.8	5	1.9
Coronavirus HKU1	55	3.4	37	4.2	9	2.7	2	1.6	7	2.6
Coronavirus NL63	50	3.1	41	4.6	6	1.8	2	1.6	1	0.4
Coronavirus OC43	38	2.4	28	3.2	7	2.1	0	0	3	1.1
Human Metapneumovirus	81	5.0	60	6.8	12	3.6	3	2.3	6	2.2
Human Rhinovirus/Enterovirus	502	31.1	379	42.8	88	26.6	16	12.5	19	7.1
Influenza A	78	4.8	29	3.3	20	6.0	13	10.2	16	6.0
Influenza A H1	0	0	0	0	0	0	0	0	0	0
Influenza A H1-2009	74	4.6	26	2.9	19	5.7	13	10.2	16	6.0
Influenza A H3	4	0.2	3	0.3	1	0.3	0	0	0	0
Influenza B	16	1.0	7	0.8	7	2.1	1	0.8	1	0.4
Middle East Respiratory	0	0	0	0	0	0	0	0	0	0
Syndrome Coronavirus (MERS- CoV)										
Parainfluenza Virus 1	10	0.6	9	1.0	0	0	1	0.8	0	0
Parainfluenza Virus 2	54	3.3	39	4.4	10	3.0	1	0.8	4	1.5
Parainfluenza Virus 3	53	3.3	44	5.0	6	1.8	2	1.6	1	0.4
Parainfluenza Virus 4	16	1.0	13	1.5	1	0.3	0	0	2	0.7
Respiratory Syncytial Virus	199	12.3	168	19.0	10	3.0	8	6.3	13	4.9
Bacteria										
Bordetella parapertussis (IS1001)	6	0.4	4	0.5	2	0.6	0	0	0	0
Bordetella pertussis (ptxP)	3	0.2	0	0	3	0.9	0	0	0	0
Chlamydia pneumoniae	6	0.4	1	0.1	4	1.2	1	0.8	0	0
Mycoplasma pneumoniae	28	1.7	10	1.1	14	4.2	3	2.3	1	0.4

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

Accepted Manuscript Posted Online

488

489 490 491

492 **TABLE 4** Performance summary and characteristics of the FilmArray RP2 versus those of the

493 comparator assays^a

	Positiv	e Percent Agre	eement ^b	Negativ	ve Percent Ag	reement ^b			
Analyte	TP/(TP + FN)	%	95%CI	TN/(TN + FP)	%	95%CI			
Viruses									
Adenovirus	70/74	94.6	86.9-97.9	1490/1538	96.9	95.9-97.6			
Coronavirus 229E	11/12	91.7	64.6-98.5	1595/1600	99.7	99.3-99.9			
Coronavirus HKU1	43/43	100	91.8-100	1557/1569	99.2	98.7-99.6			
Coronavirus NL63	40/40	100	91.2-100	1562/1572	99.4	98.8-99.7			
Coronavirus OC43	33/41	80.5	66.0-89.8	1566/1571	99.7	99.3-99.9			
Human Metapneumovirus	73/75	97.3	90.8-99.3	1529/1537	99.5	99.0-99.7			
Human Rhinovirus/Enterovir us	425/436	97.5	95.5-98.6	1099/1176	93.5	91.9-94.7			
Influenza A	78/78	100	95.3-100	1531/1531	100	99.7-100			
Influenza A H1	0/0	-	-	1609/1609	100	99.8-100			
Influenza A H1- 2009	74/74	100	95.1-100	1535/1535	100	99.8-100			
Influenza A H3	4/4	100	51.0-100	1605/1605	100	99.8-100			
Influenza B	14/14	100	78.5-100	1596/1598	99.9	99.5-100			
Middle East Respiratory Syndrome Coronavirus (MERS- CoV)	0/0	-	-	1612/1612	100	99.8-100			
Parainfluenza Virus 1	9/9	100	70.1-100	1602/1603	99.9	99.6-100			
Parainfluenza Virus 2	46/47	97.9	88.9-99.6	1557/1565	99.5	99.0-99.7			
Parainfluenza Virus 3	43/45	95.6	85.2-98.8	1557/1567	99.4	98.8-99.7			
Parainfluenza Virus 4	9/9	100	70.1-100	1596/1603	99.6	99.1-99.8			
Respiratory Syncytial Virus	175/176	99.4	96.9-99.9	1412/1436	98.3	97.5-98.9			
Bacteria									
Bordetella parapertussis (IS1001)	6/7	85.7	48.7-97.4	1605/1605	100	99.8-100			
Bordetella pertussis (ptxP)	2/3	66.7	20.8-93.9	1608/1609	99.9	99.6-100			
Chlamydia pneumoniae	5/5	100	56.6-100	1606/1607	99.9	99.6-100			
Mycoplasma pneumoniae	23/24	95.8	79.8-99.3	1583/1588	99.7	99.3-99.9			

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

⁴⁹⁴ ^aThese data are presented based on comparator assay only and do not reflect any discordant

495 analysis.

- ^bThe terms PPA and NPA are used instead of sensitivity and specificity to indicate that a non-496
- 497 gold standard comparator (e.g. PCR) was used for the analysis.

Result Disposition based on initial testing versus comparator		False Negativ	es	False Positives				
•	Original Discrepant Investiga Result Outcome:		come:	Original Result	Out	Discrepant Investigation Outcome:		
		RP2 confirmed ^a	RP2 unconfirmed		RP2 confirmed ^a	RP2 unconfirmed		
Analyte	Total	(TN)	(FN)	Total	(TP)	(FP)		
Adenovirus	4	1	Viruses	40	40	0		
Coronavirus 229E	41	1	3 0	<u>48</u> 5	40 0	8		
Coronavirus 229E	0			<u> </u>	3	9		
		-	-					
Coronavirus NL63	0	-	- 6 ^b	10	3	7		
Coronavirus OC43	8	2	6°	5	2	3		
Human Metapneumovirus	2	2	0	8	6	2		
Human Rhinovirus/Enterovirus	11	6	5	77	33	44		
Influenza A	0	-	-	0	-	-		
Influenza A H1	0	-	-	0	-	-		
Influenza A H1-2009	0	-	-	0	-	-		
Influenza A H3	0	-	-	0	-	-		
Influenza B	0	-	-	2	2	0		
Middle East Respiratory Syndrome Coronavirus (MERS-CoV)	0	-	-	0	-	-		
Parainfluenza Virus 1	0	-	-	1	0	1		
Parainfluenza Virus 2	1	1	0	8	5	3		
Parainfluenza Virus 3	2	0	2	10	4	6		
Parainfluenza Virus 4	0	-	-	7	1	6		
Respiratory Syncytial Virus	1	1	0	24	8	16		
		1	Bacteria					
Bordetella parapertussis (IS1001)	1	0	1	0	-	-		
Bordetella pertussis (ptxP)	1	0	1	1	1	0		
Chlamydia pneumoniae	0	-	-	1	1	0		
Mycoplasma pneumoniae	1	0	1	5	5	0		
Total	33	14	19	224	114	110		

498 **TABLE 5** Results of Discrepant Investigation for FilmArray RP2

499

500 ^aRP2 confirmed, the results of discrepant analysis supported the original FilmArray RP2 result as true

501 negative or true positive. RP2 unconfirmed, the results of discrepant analysis did not support the original

- 502 FilmArray RP2 result and result considered false negative or false positive. TN, true negative, FN, false
- 503 negative; TP, true positive; FP, false positive.
- ^bSix FN specimens were all TP for HKU1 due to a known cross reactivity in the comparator method(9)

505 506

507

Journal of Clinical Microbiology

Journal of Clinical Microbiology

MOL

	Original RP2 result characterization compared to RP ^a						
Adenovirus species	Number of True Positives	Number of False Negatives	Number of False Positives ^b				
A	0	0	2				
В	20	0	7				
С	47	3	17 [°]				
D	0	0	1				
Е	0	0	0				
F	0	0	11 [°]				
Unable to Speciate	3	1	11				
Total	70	4	48				

509 TABLE 6 Summary of Species Determinations for all Adenovirus Positive samples. 510

Downloaded from http://jcm.asm.org/ on April 19, 2018 by guest

^aTrue positives= positive with RP and RP2; False negatives = RP positive, RP2 negative; False 511 512 positives= RP negative, RP2 positive.

^b For specimens yielding a species identification (n=40), adenovirus was considered confirmed 513

514 (3 FN missed by RP2 and 37 FP missed by RP).

515 °One specimen indicated a co-infection with adenovirus species C and F

516 517